
9. COUPLED MULTI-PHYSICS PROBLEMS 

Abstract — A new hard-coupled numerical model of induc-
tion heating of thin profile plates in external time-variable 
magnetic field is presented. While the currents induced in the 
plate are expressed in terms of electric vector T-potential, the 
distribution of temperature in it is described by the heat- 
transfer equation involving the effects of heat sources and 
sinks. All nonlinearities of the system are taken into account. 
The methodology is illustrated by an example of heating an 
axisymmetric plate spring made of phosphor bronze.     

I. INTRODUCTION 
Nowadays, the distribution of magnetic field in metal 

bodies in the process of their induction heating is mostly 
modeled by magnetic vector potential A  [1–2]. But this 
approach can fail when the heated body is characterized by 
geometrically incommensurable dimensions. This is typical 
for various planar structures such as thin plates or pipes. 

Consider one possible arrangement for local heating of 
thin nonferromagnetic plates (whose thickness δ  must be 
smaller than the depth of penetration) depicted in Fig. 1. 
The field coil 3 carrying time-variable current ( )i t  gener-
ates a time-variable magnetic field in laminated magnetic 
cores 2. Magnetic flux of density ( )ext , tB r  passing be-
tween focusators 4.1 and 4.2 through the plate 1 induces in 
it currents of density ( )ind , tJ r  that produce heat.  

 
Fig. 1. Induction heating of a thin plate:                                                       

1–locally heated thin nonferromagnetic plate, 2–laminated magnetic cores, 
3–field coil, 4.1 and 4.2–ferromagnetic focusators 

II. FORMULATION OF THE TECHNICAL PROBLEM 
Modeled is induction heating of an axisymmetric profile 

plate spring before its annealing. The spring is made of 
phosphor bronze and its shape is depicted in Fig. 2. As its 
thickness δ  is very small (usually 1δ ≤ mm), we can sup-
pose that no physical quantity varies along it.  

 
Fig. 2.  Considered profile plate spring (dimensions in mm) 

The spring is heated in time variable external magnetic field 
extB  that is supposed to be parallel with the z -axis (so that 

( ) ( )ext ,ext, ,zz B r z= kB r , k  being the unit vector in the 
z -direction). This is realized by appropriately shaped focu-
sators 4.1 and 4.2 (the upper one being fixed on a movable 
part of magnetic core 2); an example is in Fig. 3.  

 
Fig. 3.  Arrangement of the heated spring between the focusators: 

1–heated plate spring, 2–glass wool (thermal insulation),                         3–
movable upper focusator, 4-lower focusator  

The task is to find the distribution of volumetric Joule 
losses in the spring and time evolution of its temperature. 

III. MATHEMATICAL MODEL 
The density indJ  of currents induced in the plate fol-

lows from the relation (the second Maxwell equation) 

 
( )ext addind

el
curl curl

t tγ
∂ +⎛ ⎞ ∂

= = − = −⎜ ⎟ ∂ ∂⎝ ⎠

B BJ BE ,   (1) 

where addB  is an additional current density produced by 
the induced currents. Introduce now electric vector poten-
tial T  by the relation [3], [4] 

ind curl= −J T .                              (2) 
After substitution of (2) to (1) we obtain 
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ext add

el

1curl curl 
t tγ

⎛ ⎞ ∂ ∂
= +⎜ ⎟ ∂ ∂⎝ ⎠

B B
T .               (3) 

Applying the first Maxwell equation to the plate (the 
time variations are considered sufficiently low, so that the 
displacement currents can be neglected), we obtain 

 add ind
0

1curl
μ

⎛ ⎞
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⎝ ⎠
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and, substituting from (2), we have 

add
0

1curl curl
μ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
B T .                  (5) 

Hence, generally, add 0/ gradμ ψ= − −T B , where ψ  is 
an arbitrary scalar function. But in our case T  represents 
the electric vector potential only produced by the induced 
magnetic flux density addB . That is why gradψ = 0  and 

add 0μ= −B T .                              (6) 
Inserting this result to (3) immediately provides the basic 
nonlinear parabolic equation for T  in the form 
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0
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1curl curl 
t t

μ
γ
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whose right-hand side is known. 
The initial condition is ( )1, 0tΩ = = 0T . The boundary 

condition follows from the fact that the current density in 
the direction of any outward normal to the spring vanishes. 
In other words ( ) ( )el , / 0 ,t tγ Γ τ Γ⋅∂ ∂ = ⇒ =T T C  (τ  
denoting the tangent, Γ  the boundary), where C  is a con-
stant vector. In order to preserve the consistency with the 
above initial condition, we immediately obtain = 0C . 

The temperature field produced by the heat losses Jw  is 
described by the modified heat-transfer equation [5] 

( )

( )( ) ( )
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where T  is the temperature, λ  is the thermal conductivity, 
ρ  is the specific mass, c  is the specific heat,. SBε  is the 
Stefan-Boltzmann constant, rC  is the coefficient of emis-
sivity, ext,cT , ext,rT  are the distant temperatures for simula-
tion of convection and radiation and, finally, c,upα  and 

c,dnα  are the coefficients of convective heat transfer along 
the upper and lower sides of the spring. But in the space 
between the focusators, the process of heating is considered 
adiabatic. 

IV. ILLUSTRATIVE EXAMPLE 
The basic dimensions of the plate spring are given in 

Figs. 2 and 3, its thickness 1δ = mm. Other input parame-
ters: ( ) ( )0, sinB r t B tω= , 0 1B = T, 10f = kHz, r 0.5C = , 

c,up 20α = W/m2K, c,dn 5α = W/m2K, ext,c ext,r 20T T= = °C. 

Parameters el , , cγ λ ρ  of the phosphor bronze (94 % Cu, 
about 5 % Sn, a small amount of Zn) are functions of tem-
perature (function ( )el Tγ  being depicted in Fig. 4). 
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Fig. 4.  Dependence ( )el Tγ  for phosphor bronze 

Computations were realized in the hard-coupled formu-
lation, by a code developed by the authors. Carefully were 
tested both convergence and stability of the results. Figure 
5 shows the distribution of the temperature along the sur-
face of the spring at several levels of time.  
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Fig. 5.  Heating of the spring in at several time levels (I. 1t = s,               

II. 5t = s, III. 10t = s, IV. 15t = s, V. 20t = s, VI. 25t = s), 
the points A, B, C, D, E, F being marked in Fig. 3 

 
The highest temperatures are at points B and E identical 

with the internal and external edges of the focusators (and 
also the places of highest changes of the electric vector 
potential and values of induced currents and Joule losses). 
The acceleration of heating in time is caused by fast in-
crease of specific resistance of the phosphor bronze (Fig. 
4), while the induced currents decrease rather slowly.    
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